442 research outputs found

    Phase Space Invertible Asynchronous Cellular Automata

    Full text link
    While for synchronous deterministic cellular automata there is an accepted definition of reversibility, the situation is less clear for asynchronous cellular automata. We first discuss a few possibilities and then investigate what we call phase space invertible asynchronous cellular automata in more detail. We will show that for each Turing machine there is such a cellular automaton simulating it, and that it is decidable whether an asynchronous cellular automaton has this property or not, even in higher dimensions.Comment: In Proceedings AUTOMATA&JAC 2012, arXiv:1208.249

    Cellular Automata on Group Sets

    Get PDF
    We introduce and study cellular automata whose cell spaces are left-homogeneous spaces. Examples of left-homogeneous spaces are spheres, Euclidean spaces, as well as hyperbolic spaces acted on by isometries; uniform tilings acted on by symmetries; vertex-transitive graphs, in particular, Cayley graphs, acted on by automorphisms; groups acting on themselves by multiplication; and integer lattices acted on by translations. For such automata and spaces, we prove, in particular, generalisations of topological and uniform variants of the Curtis-Hedlund-Lyndon theorem, of the Tarski-F{\o}lner theorem, and of the Garden-of-Eden theorem on the full shift and certain subshifts. Moreover, we introduce signal machines that can handle accumulations of events and using such machines we present a time-optimal quasi-solution of the firing mob synchronisation problem on finite and connected graphs.Comment: This is my doctoral dissertation. It consists of extended versions of the articles arXiv:1603.07271 [math.GR], arXiv:1603.06460 [math.GR], arXiv:1603.07272 [math.GR], arXiv:1701.02108 [math.GR], arXiv:1706.05827 [math.GR], and arXiv:1706.05893 [cs.FL

    Well Posedness and Convergence Analysis of the Ensemble Kalman Inversion

    Get PDF
    The ensemble Kalman inversion is widely used in practice to estimate unknown parameters from noisy measurement data. Its low computational costs, straightforward implementation, and non-intrusive nature makes the method appealing in various areas of application. We present a complete analysis of the ensemble Kalman inversion with perturbed observations for a fixed ensemble size when applied to linear inverse problems. The well-posedness and convergence results are based on the continuous time scaling limits of the method. The resulting coupled system of stochastic differential equations allows to derive estimates on the long-time behaviour and provides insights into the convergence properties of the ensemble Kalman inversion. We view the method as a derivative free optimization method for the least-squares misfit functional, which opens up the perspective to use the method in various areas of applications such as imaging, groundwater flow problems, biological problems as well as in the context of the training of neural networks

    14C contamination testing in natural abundance laboratories: a new preparation method using wet chemical oxidation and some experiences

    Get PDF
    Substances enriched with radiocarbon can easily contaminate samples and laboratories used for natural abundance measurements. We have developed a new method using wet chemical oxidation for swabbing laboratories and equipment to test for 14C contamination. Here, we report the findings of 18 months’ work and more than 800 tests covering studies at multiple locations. Evidence of past and current use of enriched 14C was found at all but one location and a program of testing and communication was used to mitigate its effects. Remediation was attempted with mixed success and depended on the complexity and level of the contamination. We describe four cases from different situations

    Past ice sheet-seabed interactions in the northeastern Weddell Sea Embayment, Antarctica

    Get PDF
    The Antarctic Ice Sheet extent in the Weddell Sea Embayment (WSE) during the Last Glacial Maximum (LGM; ca. 19–25 calibrated kiloyears before present, cal. ka BP) and its subsequent retreat from the shelf are poorly constrained, with two conflicting scenarios being discussed. Today, the modern Brunt Ice Shelf, the last remaining ice shelf in the northeastern WSE, is only pinned at a single location and recent crevasse development may lead to its rapid disintegration in the near future. We investigated the seafloor morphology on the northeastern WSE shelf and discuss its implications, in combination with marine geological records, for reconstructions of the past behaviour of this sector of the East Antarctic Ice Sheet (EAIS), including ice-seafloor interactions. Our data show that an ice stream flowed through Stancomb-Wills Trough and acted as the main conduit for EAIS drainage during the LGM. Post-LGM ice-stream retreat occurred stepwise, with at least three documented grounding line still stands, and the trough had become free of grounded ice by ~10.5 cal. ka BP. In contrast, slow-flowing ice once covered the shelf in Brunt Basin and extended westwards toward McDonald Bank. During a later time period, only floating ice was present within Brunt Basin, but large ‘ice slabs’ enclosed within the ice shelf occasionally ran aground at the eastern side of McDonald Bank, forming ten unusual ramp-shaped seabed features. These ramps are the result of temporary ice-shelf grounding events buttressing the ice further upstream. To the west of this area, Halley Trough very likely was free of grounded ice during the LGM, representing a potential refuge for benthic shelf fauna at this time

    Online 13C and 14C gas measurements by EA-IRMS–AMS at ETH ZĂŒrich

    Get PDF
    Studies using carbon isotopes to understand the global carbon cycle are critical to identify and quantify sources, sinks, and processes and how humans may impact them. 13C and 14C are routinely measured individually; however, there is a need to develop instrumentation that can perform concurrent online analyses that can generate rich data sets conveniently and efficiently. To satisfy these requirements, we coupled an elemental analyzer to a stable isotope mass spectrometer and an accelerator mass spectrometer system fitted with a gas ion source. We first tested the system with standard materials and then reanalyzed a sediment core from the Bay of Bengal that had been analyzed for 14C by conventional methods. The system was able to produce %C, 13C, and 14C data that were accurate and precise, and suitable for the purposes of our biogeochemistry group. The system was compact and convenient and is appropriate for use in a range of fields of research

    Conditional statistics of electron transport in interacting nanoscale conductors

    Full text link
    Interactions between nanoscale semiconductor structures form the basis for charge detectors in the solid state. Recent experimental advances have demonstrated the on-chip detection of single electron transport through a quantum dot (QD). The discreteness of charge in units of e leads to intrinsic fluctuations in the electrical current, known as shot noise. To measure these single-electron fluctuations a nearby coherent conductor, called a quantum point contact (QPC), interacts with the QD and acts as a detector. An important property of the QPC charge detector is noninvasiveness: the system physically affects the detector, not visa-versa. Here we predict that even for ideal noninvasive detectors such as the QPC, when a particular detector result is observed, the system suffers an informational backaction, radically altering the statistics of transport through the QD as compared to the unconditional shot noise. We develop a theoretical model to make predictions about the joint current probability distributions and conditional transport statistics. The experimental findings reported here demonstrate the reality of informational backaction in nanoscale systems as well as a variety of new effects, such as conditional noise enhancement, which are in essentially perfect agreement with our model calculations. This type of switching telegraph process occurs abundantly in nature, indicating that these results are applicable to a wide variety of systems.Comment: 16 pages, 3 figures, to appear in Nature Physic
    • 

    corecore